首页> 外文OA文献 >The Semantic Knowledge Graph: A compact, auto-generated model for real-time traversal and ranking of any relationship within a domain
【2h】

The Semantic Knowledge Graph: A compact, auto-generated model for real-time traversal and ranking of any relationship within a domain

机译:语义知识图:一个紧凑的,自动生成的模型   域内任何关系的实时遍历和排名

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes a new kind of knowledge representation and mining systemwhich we are calling the Semantic Knowledge Graph. At its heart, the SemanticKnowledge Graph leverages an inverted index, along with a complementaryuninverted index, to represent nodes (terms) and edges (the documents withinintersecting postings lists for multiple terms/nodes). This provides a layer ofindirection between each pair of nodes and their corresponding edge, enablingedges to materialize dynamically from underlying corpus statistics. As aresult, any combination of nodes can have edges to any other nodes materializeand be scored to reveal latent relationships between the nodes. This providesnumerous benefits: the knowledge graph can be built automatically from areal-world corpus of data, new nodes - along with their combined edges - can beinstantly materialized from any arbitrary combination of preexisting nodes(using set operations), and a full model of the semantic relationships betweenall entities within a domain can be represented and dynamically traversed usinga highly compact representation of the graph. Such a system has widespreadapplications in areas as diverse as knowledge modeling and reasoning, naturallanguage processing, anomaly detection, data cleansing, semantic search,analytics, data classification, root cause analysis, and recommendationssystems. The main contribution of this paper is the introduction of a novelsystem - the Semantic Knowledge Graph - which is able to dynamically discoverand score interesting relationships between any arbitrary combination ofentities (words, phrases, or extracted concepts) through dynamicallymaterializing nodes and edges from a compact graphical representation builtautomatically from a corpus of data representative of a knowledge domain.
机译:本文描述了一种新型的知识表示和挖掘系统,我们称之为语义知识图。本质上,SemanticKnowledge Graph利用反向索引以及互补的非反向索引来表示节点(术语)和边(多个术语/节点的相交列表中的文档)。这在每对节点及其对应的边之间提供了一个间接层,使边能够从基础语料库统计信息中动态实现。结果,节点的任何组合都可以具有与其他任何节点的边缘,并且可以对其进行评分以揭示节点之间的潜在关系。这提供了许多好处:知识图可以从区域世界的数据语料库自动构建,新节点及其合并的边可以从现有节点的任意组合中立即实现(使用集合操作),以及完整的模型模型。可以使用图形的高度紧凑表示形式来表示和动态遍历域内所有实体之间的语义关系。这样的系统在知识建模和推理,自然语言处理,异常检测,数据清理,语义搜索,分析,数据分类,根本原因分析和建议系统等领域具有广泛的应用。本文的主要贡献是引入了一种新颖的系统-语义知识图-能够通过从紧凑的图形中动态实现节点和边来动态发现和评分任何任意实体组合(单词,短语或提取的概念)之间的有趣关系从代表知识领域的数据语料库自动构建表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号